
OHDSI Japan Meeting #72

OHDSI内では、実名での活動になります。
Zoom参加時も「名前は実氏名で」お願いします。



本日の内容

■ OHDSI 論文の紹介
■ OHDSI global/APAC から
• Global Symposium参加報告（山下先生／九州大学）
■話題
■ OMOP学会発表アンコール2題
(1) An Observational Study on Obesity Disease in Japan Using Payer Claims Data-
Comparison between OMOP CDM and Native data-（岳野さん／IQVIA）
(2) OMOPデータを用いた日本の結核患者の治療実態調査-海外の結核低まん延国
との比較研究-（伊澤さん／IQVIA）
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• 要旨（Abstract）
• フェノタイプ定義は、精密医療および個別化医療の発展に不可欠である。
• PheKBや OHDSI ライブラリといったフェノタイプ知識ベースは存在するものの、依然として
多くが手作業に依存している。

• 本研究では、生物医学文献からフェノタイプと標準化コードを自動抽出するために、
BiomedBERTベースの固有表現抽出（NER）と関係抽出（RE）を統合した自動パイプライン
PheCatcherを提案する。

• 人手アノテーションを補完するために GPT-4 を用いて合成データを生成し、モデル性能を向
上させた。

• その結果、NER モデルの「フェノタイプ」エンティティに対する F1 スコアは 0.616 から
0.800 に向上し、RE モデルは 0.901 の F1 スコアを達成した。さらに、このパイプラインを
PubMed Central（PMC）の論文に適用したところ、173,283 件のフェノタイプ定義を抽出する
ことに成功し、すでに公開されている。

• 本研究は、情報抽出（IE）における合成データの有用性を示すとともに、合成データを活用
して IE システム全体を構築できることを示した初めての証拠を提供するものである。
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PheCatcher LLM 

[PheCatcher: Leveraging LLM-Generated Synthetic Data for Automated Phenotype Definition Extraction from Biomedical Literature]
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10月の OHDSI Global/APAC
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Call for Volunteers

• APAC Communications Team
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