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Vb (737%)
® 46,585 EDEXIE ENERIC. 9 BREDHEELTL o IUBEZELT BEDICFTYIIMBERA.
NS IS S54RI, o —HMEMR(EFEAFIEN)ICLS blinded validation =

o IFRRFVS: EE(200 T—2X),

- BLEE GRECENERZE. FAEEIER L. TEEHIFR. 052

S0
« RxNorm approximate matching API [CL S
—=

- OHDSI Athena % fallback &UTEH

« ATC J—RFYFEEISXIFEHRZ RxNav API TEN

. BHIT—X(EERETS VR EEEHRE)ZIL—IUEL
CTHHLE
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fEE (#E8)

o BIKTUFEI94.5%(44,034 / 46,585 &H) ¢ WR{bl-EY EEER T TV IHRL:

o EFIE|C L BRI « XHYS3U(mesalamine-157 5V RE) & ENE
Precision:98.02%, Specificity:97.22% (asthenia) (signal of disproportionate
Recall:77.34% reporting (SDR))

o TYFRINLEZHDSSE: + EROYO0FPIR(“HCTZ”, “HydroDIURIL”
98.6% THIMAEHENS, 73.8% T ATC 1— <) el (erythema)

REMRS - @R TSV RETIIRE TS ah o722 T I

0 F—HEH>=Z2HMNE<IILLT: N IRERICERE DT

TTIADN - BRERER, EfMEs, BAFxTI5Y
R4, FBABR7GECT
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R PR

o ERQZNDEBMI(E. Z2MI T FILDBENZEKIEIC ® RxNorm [CIREINTULWRV\BARRER EE IS
BETFIES, R IEIHODEELL,

o IRENATSAVIEERE TRV YFNIERICDRL E ® ZEENNGFICTSUREE) ILREN,
AlZeMEROERERLICHFST S, o TEHELTIE—BRDEMGAEZY CIX T AREMN.

o EHEEXE(RxNorm-ATC)IZ&KY ., FAERS *0 e validation Y FIVIZ2004 &R,

VigiBase BEMET—5 EDBEERBANERZIC 5,
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5w

o EFIZMIZFEIE ADR T—5DmBER LICHH TEE
THYU.FINMTS1UE SRE  SRREODEBNFE
EiRMI D,

® 1749 ADR T—YICHITBDEEMEDKFR ST H—
(46,585 &#[-36.8% RV VKD ) ZXFEHEL. &
DT FINREORRER L& BRI EER MR
ZER LT,
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EpUsE

« BBLETIE REANSImglltablet IR EDREFEPIEFEEEEL TRIDERDRDEDHEIXT

o FTALNAUDHIVREEICEMNIGT BEDITRED TSV AFERAFENT S REDERRI—IVZEN

« BHEMLETEERYPCT VWEMGEAICDOVWTIEL FRFARMEERUIZRFIN Y E D T(C L > THERICHIE

NWF T - EAEAL

KFELETIE FTEEDRBRZEZF VI IH OHES

BOHMSRIFTNIERXNorm APITREEYIRIZER S (RXCUIL; RxNorm Concept Unique Identifier) ZE\g
KBUZZBEDHOHDSI AthenaZRAWTRBREZEZRERLZD X THERXNorm|Z B

NOSDFIEZER TEFEELTERVFRIEIKRYYFELTIHRD

NERFT—I TNV F X

. RxCUI WL I RxNav API &L TEMRS . EEE—iEE. B, ATC I—RAR Y OEmBREmws
. FEEIZ RxNorm BESICE S|\ 22T — 5 T a s

. BEFINEBEHH D—B U BEEMBREU DT SN HHE
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[ Editorial: External control arms for single-arm studies: methodological considerations and applications ]

Z0d

Deborah Layton 1, Laura Hester 2 and Asieh Golozar 3

1. Lane, Clark and Peacock (LCP) LLP, London, United Kingdom
2. Johnson & Johnson, Horsham, PA, United States,
3. Nemesis Health, Observational Health Data Sciences and Analytics (OHDSI), New York, NY, United States

1. [FUSHIC(Introduction) (1. [XLsIZ(Introduction))

o A EfLLEEE (External Comparator:EC) (&, ERERERER o FRHIHFH° HTA(EFREAMEHE) COFERAMEZTHY.
HDBET—5EANT ABRBERDOLLEOXIR DT E1T N7 RZER/IRICUT=ERBERAERDUEENEE D
27ZHICAHLLN D, L\,

o F—SRICIFEF LT FREBLI AN, fDERRERER: o FRERSTIF EC HIRDBMEL R ER/DHDT=HD
EZRBUTIVT—ILRF—4 (RWD)RESEND, BHOAERER S 5 DDHBIEBNLTLD,

o NAPHRMREMRIATIE. 5% MELLEEER(RCT) A H
5 a. EC OFERAMEML TS,

Layton D, Hester L, Golozar A. Editorial: External control arms for single-arm studies: methodological considerations and applications. Front Drug Saf Regul. 2025;5:1579171. "
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2. AEEEE L lER A (Standardizing

nomenclature and conceptual frameworks)
o EC FFEDOEMYCr . FRfEC—E L= AEDBEAT o MEE -HHUBENIRENCHFEZE. 8RMEEL

AR, T EC ZIEUKIRO 7= ICISHEDRRE{LNAEE,
® Rippin 51 “Externally Controlled Trial” &WL\5

FHE EC AFRIIC IOV TRESNTULRLRY
SRR EED 15,
® External Comparator Cohort(ECC) *° External
Comparator(EC) &L\ o/zAEZE#E,
® EC [& RCT OB & (IRANICELDERTHY.
DT —IREREZZ=FERT D RCT DIP—LjElL)
DBERILBETI TN,

v

!
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[ Editorial: External control arms for single-arm studies: methodological considerations and applications ]

v

. Estimand D1&ZI(Estimand Framework &) 4, 53— :SA7I-ITZ2L—3(TTE)
® Rippin ICLBRIDFETIL. ICH E9Q(R1) D ® Arnold 5I&.RCT & EC fAEDF vy TZ=I8BH D=8

estimand framework = EC HIEISERTS &% Target Trial Emulation(TTE) ZH#E,

R=E, o MM RCT DERET (WREZE, JAREIS. PUMNAE

5 DOZEFR(aEEM. £E. FHEER. T ARAIRI D FRE)EEERL. TNE RWD TRIBYT 2F %,

HUEFLANILDOER) [CINA T, o RWD MEVYTEEMEMEWGS HEIC/\MT7INEUS
R—RSA1UER EWVSBRAZ B,
#E=Z (marginal estimator) o ZNICENMNNDS T BRENE<BEE LINLEIL—LA
TN J—0THhD71z6h. FDA-EMA-MHRA "REFRFZFZD

2& EC FFEDENMEREER T dWENH D e, EEtmELIcFES.

RWD DARZEMENINAT ANS D76, BEIELR
estimand DR EIE EC ARICHV\THICEE,
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5. I\ 17wk BAEMFE(Hybrid Natural History

Studies)

® Ugoji 5ld A MEEBMEE TIEZA TS \M Ty RE
BRI (NHS) Z#50 (R + RS OMAE0
)

o EhMMDEEEN FIMT EC LUBFEEN DY . HmIEK
BT EC fERICER.

® T EEICILEMDE R R (FRERE. ER L OHKIR
E)VHNE,

o SEMVIRVWEIR TH Y . FRERLEZ REBICEVWV/ZEE
IR A=,

L
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v

6. I\17 ADZFREE MK (Bias in EC studies) (6. NMPRADRBEEREE(Bias in EC studies))
® Ackerman Sl FFICEEEMEIG TO BAIERED PFS o HER!
WEICEZ DEE /. o IURMAVMEETZ IV I X LD E
FRINATR: o I\MPRZEEITEDIIIL—I3VER
. BNEN1T7 2 (Misclassification Bias) :#4T-  FEIREF DAL &ERAE
RULDFROTEHEE

o H—RAZR/IN17Z(Surveillance Bias):
RWD DiHisEE N EER K W E A
T—ARAS D RINAP ABEHDEEF NSV, SrnFEE
HABDIDERIBRINATREED,
FEANIC PFS A—ULTVWTE B2 DT —5 mEBEDM
RBIC KW AP AN EIFT DREED S,

Layton D, Hester L, Golozar
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7. $&E#m(Conclusion)

o EC MAZEIIHREHIZHBZB® HTA [CHEVLWTEEMEMNBELTEH
V. FERDFEFENKDHEND,

o AL, TTE. I\ T )Y RBRERRIE. /N1 7 KR
IR EHSFEMEMR LD,

® K CHh A FmIMRETOH EC FENEBEATHY . BDOEL)

T—% . SR, BRRMTE U TDEFENSEDRRINIC

AR,

o HHISE-EXRR -HREO#MENRAN EC BROF
BICEE,

Layton D, Hester L, Golozar
A. Editorial: External control arms for single-arm studies: methodological considerations and applications. Front Drug Saf Regul. 2025;5:1579171.
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[ Trends in prescription opioid use in Europe: A DARWIN EU® multinational cohort study including seven European countries ]
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g (2. )

o LK TIIREICHRYAL AT R EENELIRAREE ® MBRALAMFEABEDRE-HEEINDIUTEL-A
PIREE 2> THY . BEIEER - FET AN, AEZHSNCT D,

o KN TERABDBSNEES THY., WAL R ER 3 B
DENEHEEDBE, ® UK-ZRAV-ASIUIDTSAIUIT T RILE—-RAY

o HIEFMARFENIESEXE CEMLLEN EEEIZ 7728, DART—4 . TSUZADFEET—4 . TARZFDINAF
(LN BECLBBENRD SN T, NUUBRT -5 TN,

® AT OMOP CDM I|C#E#A1L,

® 2012~2022FDHFHEAAIREREHME(12H1 B
DN E UHEARED) o

® FFAE AR (ffl:codeine, tramadol) &aEAE AR
(5l:morphine, fentanyl, oxycodone)[Z94E,

2. B8y
BRNTHEIDER, T —YRX—RXZMAL), 2012~2022

FOUFAEAA R ERDFELEZR(incidence) EFHEE
(prevalence) DR %1,

I
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4. FRFER 4.3 FEF MR OIEERIENA

4.1 AEFA FEROE2AEIM ® E/MEM:codeine, tramadol(ZLDETIET)

o FTEAMRERDERE>SLEFY L. BHICK>TIEE e IENfEM: oxyodone, morphine, fentanyl(Z<®
(51:EBB +113%), ETLER)

o HFRWADRERIZOETHEA (H:UK CPRD ® WA RDMEABIMARFCIEETHY . DREFELD
—50.7%). UROMBEZIIND,

® 2020-2021=FIXCOVID-19MFEIC KLU A H—BF 4.4 FHFEREDRFEH
ISR T, ® MFMAEESEE 6,196,266 A,

4.2 FEBIDEFE o ZMHDEIGHEWN(ZDETO60%RIE),.
o EmECREMARNEL\(H: UK, 81T LETH3IT1% ® N F#ERS50~57r%o
HMER) . o ARSI EIC Lo TAS<TH:
o 10U TIEEH TIEL(0.1%), - JAbe PRIEZH
. FSAYUSTI9~20H
. BEAEACR: KUEEET BIERE

Xie J, Du M, Guo Y, Barboza C, Brash JT, Delmestri A, et al. Trends in prescription opioid use in Europe: A DARWIN EU(®) multinational cohort study including seven European countries. Front Pharmacol.
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4.5 #HRSNDIWNT5E (F28R)

IR AR AR R (1% - ESUERER)

& (R, R, aRRy)

#%(Z codeine TIXIZIBEMNBIID (F:RILE—T
26.9%).

W CIETREHEIRERMERES L,

B

FRAA TP TE FRERENELEZTYL TN DY
RICIEM#EFERE I OFENTERIND,

B A R OERBMIE, HKF - BEERDURY LFIC
DIRMDEREM

SEE COEREMNIIFISTFENNE,

COVID-19(C LB EE7ZIVLRAETHUAICRELT .

6.

RS

DEEREE X2 T —YEBNT T2 REN S E)\HE
S2LI): 5k

KEDIRESHEEETE T IRFEHIRE TS ICED<
HERE o WIS D IEFETSECERDVR V28D MR TAIEREIR ] &
LTikhniz,

7. o

RN TIEFTRA EA M RAB IR L TVWD—FA, BRE
[ERS I EEE L CERD L TL D,
FlCxk584 7 K (fentanyl, oxycodone,
morphine)xxDEERAIBIINEEE, SEITUHFDZHME
S, )R ERAEEDE ., MIRRERNNE,

KRR TV IO A ENFLERNERE CTHh D,

Xie J, Du M, Guo Y, Barboza C, Brash JT, Delmestri A, et al. Trends in prescription opioid use in Europe: A DARWIN EU(®) multinational cohort study including seven European countries. Front Pharmacol.
2025;16:1608051.
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[ Mapping and Harmonization of CVX vaccine terms to the Vaccine Ontology |

. BR 2. BW
SRRV IFUDREFE-FIRSNSH T, JIFVIBFHRD ® CVX(CDC Vaccine Administered code)273:&
EEALIERAIR, Z VO ISYwED I L BEDFIIZRD &,
OMOP Common Data Model(CDM)I& CVX *° o FHEMEFECEDIAANTNIV, BUNIVELE. LLM
RxNorm ZF#JHULT EHR 7—9%1Z2#{b 90, N flE) EFEBVVE D T A NDE THRIEZER D,
DFEEIF T RIRNEBIBE CRERZRZT. JIF
Jﬁyﬁﬁi(gﬁﬁﬁb‘ﬁﬁo

JOFUMEEOSEA U OY—ThB Vaccine
Ontology(VO) ZFB\\ T, BXxHIERZ= T I DWW
HH A% EHE,

!
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3. A&
3.1 CVX AEDINEREDEE 3.3 ¥g8gvverd
® 273 CVX AZEEEE - REAEA CHRRIIICHE 1. FEBDHAHR—ZFELE (Sentence
® JMILRTIUF(161). MIETIF(43), %&E embedding)
DOF(2)GERIIVF(33) . EIOF (). ® 2. BUANJIVELE (Jaccard similarity)
FEJOTVED NI TIOF " (24) SR, 3. AKHREEEETIVL(GPT-40)ZAL\HEBIL
3.2 FEvvey s o TNTNLifEmEmEL EELWLWYED T DR
o VO BIFlEBZREL. MEICRUTHIR VO AE M ZERTo
p=N 18
o IXT1NEFRTvE VI ZERRIEL, VO [CEFEELE
WIZSIFFTRRIERK .

® “AS03 adjuvant” RETOFILANDI—RIL
VO RDBENRT S ANBLE,

N
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4. FBFR
4.1 CVX OfFER1ME 4.4 CVX-VO OWL DR
® CVX D 2738BINRTM VO [CRYE VT EEEIC, o CVX IZHHT 2D VO AEDOHMHUTE cvx-
4.2 FBEEFEDERE vo.owl =G,
® 2022 Fhx VO TOHREE CTIFEEL NIVEBELE o CVX [T dfEBIEE v HRIEREGRZERZH. 7T
(Hybrid approach 1) H&tEEEE(85.55%) T—23VRERES.
® 2024 FhR VO TIFBENESICME(87.07%), 4.5 FAH
4.3 )Ny TI0F 2 (Passive vaccine) DB ® Description Logic(DL)ZITUICELWUTHINT 7
o CVXIZIX 240 REI/OTIY idsR/k IF DML 1R E DERBRENE S,
HEDZEND, ® VO £2RZERFRID_ET.CVX ITEFNRWNTS
o _NOSIFREFMAEECIIKISEREIZFETD: VRZTOF UM ATRE,

. VO IC “passive vaccine” 95X &#HEkU.
2A4FE = FEERIICEN,

I
Pan Y, Manuel W, Abeysinghe R, Zheng J, Davydov A, Yang Q, et al. Mapping and Harmonization of CVX vaccine terms to the Vaccine Ontology. United States; 2025.
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5. ER
o FE|+¥BED/N\1TUVYRARICKY . SME THERMN
RIYYE DT %ZERK,

FEBIICIE RXNorm+-SNOMED CT #2& OMOP M
thEEEDHSICEILRTE.

“passive vaccine” DEZXREEE(LICELY., RETO
TUEDORVWIKRE<HE,
VO DiiERICEK Y EHR 8- DO F VR DIBHR R T —
54 =Y ACI 1 e

Pan Y, Manuel W, Abeysinghe R, Zheng J, Davydo

v A, Yang Q, et al. Mapping and Harmonization of CVX vaccine terms to the Vaccine Ontology. United States; 2025.

6. f&m

® CVX 2738 INTZE VO [C¥vEVT L., EBEDEER
B E % ERK o

o ¥HEEMLFAEITYE YT TOERAZEKIEICKIEL. K
DARBZESEHEANDIANEEE, VO DF&(EIZLY.
OMOP CDM ICE1FBTIOF 7 —9DRE - RFR M- —
EMNmEE,
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[ Advancing Real-World Evidence Through a Federated Health Data Network (EHDEN): Descriptive Study ]
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. =(Background) (1. = (Background))
BN CIEEC E DEREHIEN 7 — N R 2D, | ® TSANI—REDRD, T-YRBET —YN—bF -

PILT—IVRET—5(RWD) DA - LEER DR EE REFL. BITRROH» (EEHE) =BT 51 EH.
EHDEN(European Health Data & Evidence

Network) &, ERM£HDRWDZ OMOP CDM [CZiF

FLL. D7 L= 3 VBB ZRlRElC T 728D ITERIL

TNz
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